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Abstract

Understanding protein function often necessitates characterizing the flexibility
of protein structures. However, simulating protein flexibility poses significant
challenges due to the complex dynamics of protein systems, requiring exten-
sive computational resources and accurate modeling techniques. In response
to these challenges, the CABS-flex method has been developed as an efficient
modeling tool that combines coarse-grained simulations with all-atom detail.
Available both as a web server and a standalone package, CABS-flex is dedi-
cated to a wide range of users. The web server version offers an accessible
interface for straightforward tasks, while the standalone command-line pro-
gram is designed for advanced users, providing additional features, analytical
tools, and support for handling large systems. This paper examines the applica-
tion of CABS-flex across various structure-function studies, facilitating investi-
gations into the interplay among protein structure, dynamics, and function in
diverse research fields. We present an overview of the current status of the
CABS-flex methodology, highlighting its recent advancements, practical appli-
cations, and forthcoming challenges.
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all-atom molecular dynamics (MD) to small systems and
short timescales (Kmiecik et al., 2016). In practice, for

The flexibility of a protein's structure can be pivotal to its
biological function. Unfortunately, experimental investi-
gation of protein dynamics is often challenging or
unfeasible. Consequently, computer simulations play an
important role here; however, the computational cost
restricts the application of classical simulations like

most biologically relevant proteins, classical simulations
of structural flexibility demand significant computational
resources, such as high-performance computer clusters.
In the age of AlphaFold, the field of structural biology
has witnessed a profound transformation in our ability to
predict protein structures with remarkable accuracy
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(Varadi et al., 2022). However, the importance of dynamic
and flexibility predictions cannot be overstated. Thanks to
AlphaFold, a myriad of previously elusive systems (Varadi
et al, 2022), including disordered regions (Ruff and
Pappu, 2021), are now accessible for comprehensive
dynamic simulations. The confidence scores provided by
AlphaFold not only inform us about the accuracy of struc-
tural predictions but also offer invaluable insights into pro-
tein flexibility (Schwarz et al., 2021). Numerous pioneering
studies have emerged, aiming to harness AlphaFold's predic-
tive power for flexibility assessments (Guo et al., 2022;
Ma et al., 2023). However, these endeavors are not without
challenges, such as reconciling the static nature of structural
predictions with the inherently dynamic nature of pro-
teins (Saldafio et al., 2022) or better prediction of protein
regions that are disordered under ambient conditions
(Ma et al., 2023).

A decade ago we proposed CABS-flex, a method for
fast simulations of protein flexibility (Jamroz et al., 2013a).
This method has demonstrated a speed advantage of three
to four orders of magnitude compared to all-atom MD
(Jamroz et al., 2013a) and continues to be competitive.
The CABS-flex method is built upon the well-established
C-alpha, beta, and side chain (CABS) coarse-grained pro-
tein model, the applications of which have been compre-
hensively reviewed (Kmiecik et al., 2016). The dynamics
observed in CABS Monte Carlo simulations align well
with the dynamics observed in MD simulations of folded
globular proteins over nanosecond timescales (Jamroz
et al., 2013a, 2013b), fluctuations detected in NMR ensem-
bles (Jamroz et al., 2014), and experimental data on fold-
ing and binding dynamics (Ciemny et al., 2016; Kmiecik
and Kolinski, 2007, 2008; Kmiecik et al., 2012, 2016;
Kurcinski et al., 2014, 2020). CABS-flex was made avail-
able as a publicly accessible web server (Jamroz et al.,
2013b) and later updated to version 2.0 (Kuriata
et al., 2018) available at http://biocomp.chem.uw.edu.pl/
CABSflex2. Subsequently, the CABS-flex method was
made available as a standalone application (Kurcinski
et al, 2019)—a Python package engineered to provide
command-line access to CABS computations, granting
users full control over the simulation process. CABS-flex
also serves as a component responsible for modeling pro-
tein flexibility in the Aggrescan3D method (Zambrano
et al, 2015) for structure-based predictions of protein
aggregation preferences. The CABS-flex methodology was
also used in the protocol for flexible docking of protein-
peptide complexes, available as CABS-dock (Kurcinski
et al., 2020), which enables modeling of large-scale confor-
mational changes during the docking simulation process
(Ciemny et al., 2016; Putawski et al., 2023).

In this paper, we provide a concise overview of the
CABS-lex method (Section 2) and showcase its practical

applications, supported by recent case studies (Section 3). Our
demonstrations confirm the efficacy of the CABS-flex method
in real-world applications, including analyzing the structural
dynamics of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) spike proteins, modeling protein flexibility,
exploring allosteric sites, and predicting regions prone to
aggregation or nitrosylation. We also illustrate how CABS-flex
can be used to combine flexibility analysis with predicted
local distance difference test (pLDDT) predictive confidence
scores. Finally, we discuss the important aspect of all-atom
reconstruction from coarse-grained models and conclude with
remarks and challenges for future research.

2 | CABS-FLEXMETHOD

The CABS-flex methodology relies on a high-resolution
coarse-grained model to represent protein chains, where
each protein residue is characterized by up to four atoms.
This representation includes the Ca and Cp atoms, as
well as two virtual pseudo-atoms: one representing the
center of mass of the side chain, and the other positioned
at the center of the Ca—Ca virtual bond (Kmiecik
et al., 2016; Kolinski, 2004). Notably, CABS-flex leverages
knowledge-based statistical potentials, encompassing
sequence-dependent short-range conformational prefer-
ences, context-dependent pairwise interactions of side
chains, and a comprehensive model for hydrogen bonds
within the protein's main chain. Importantly, our tool
incorporates solvent effects implicitly into its calcula-
tions, enhancing the accuracy of its simulations. Through
the implementation of a Monte Carlo-based scheme that
controls a random series of small local movements,
CABS-flex captures the intricate dynamics of proteins in
long-term evolution. CABS-flex simulations demonstrate
computational efficiency, with simulation times depen-
dent on the size of the system. For example, 20 amino
acid peptides require just over a minute, 500 amino acid
proteins take less than an hour, and 1000 amino acid pro-
teins about 2h on an Intel Xeon 2.50 GHz processor.
Coarse-grained structures produced during CABS-flex
simulations can be rapidly translated onto atomistic
models of reasonable fidelity (see discussion in
Section 3.7). This unique combination of techniques
makes CABS-flex an invaluable tool for protein research.

2.1 | CABS-flex web server

The CABS-flex web server prioritizes accessibility and user-
friendliness for nonspecialists in programming (Jamroz
et al., 2013b; Kuriata et al., 2018). Simply providing a file
containing a full-atom model of a protein in PDB format is
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FIGURE 1 CABS-flex pipeline in default mode. The input protein structure serves as the starting point for the simulation and defines
distance restraints based on either a default or a selected scheme. Optional inputs may include user-defined distance restraints. The
simulation employs a coarse-grained CABS model. The protein dynamics trajectory is analyzed and clustered into 10 representative models,
each capturing the essential variability of its cluster. These representative models are then reconstructed into all-atom models. The outputs
of this process include PDB structures of the representative models, fluctuation profiles (illustrating RMSF vs. amino acid residue number),
and contact maps derived from the trajectory. RMSF, root mean square fluctuation.

FIGURE 2 Distance restraints
imposed on the protein (PDB ID: 2gb1)
in the CABS-flex default modes SS1
(upper panel) and SS2 (lower panel).
The left panels show the complete
network of restraints shown as green
and orange sticks, respectively for SS1
and SS2. In the middle, the restraints for
a single residue are shown. The right
panels show 10 protein models
representing clusters of structures
collected during one CABS-flex run with
given default parameters. One can
observe here a difference in the
movement of the part depicted in the
middle panel resulting from a different
number of restraints.

enough to simulate the dynamics of the protein and to  http://biocomp.chem.uw.edu.pl/CABSflex2. In response to
obtain an analysis of the fluctuations and their visualization. user feedback, we have expanded the restrictions on protein
The server's capabilities have been significantly enhanced  structure input from 400 to 2000 amino acids and, from
following a major upgrade to the 2.0 version available at single-chain proteins to those comprising up to 10 chains.
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This progress was facilitated by increased computing
resources. Additionally, we enhanced our result analysis by
offering protein contact maps for the simulation trajectory
that display the frequency of residue-residue contacts during
the simulation process and for 10 selected protein models
(Figure 1).

Furthermore, a customizable panel has been imple-
mented, offering a range of simulation parameters and
options to provide better control over the simulation pro-
cess. This includes user-defined alterations to distance
restraints. Through this approach, it is possible to incor-
porate experimental data into the simulation, immobilize
specific segments of the model, or eliminate selected
restraints. Within the web server, users have the option
to choose from various restraint modes. Each ‘“Mode”
directs the algorithm in generating restraints based on
the assignment of secondary structures to the residues.
Specifically, if set to “SS1,” the algorithm generates
restraints when at least one of the residues is designated
with a regular secondary structure, such as a helix or
sheet. The “SS2” mode requires both residues to be
assigned a regular secondary structure for restraints to
be generated (Figure 2 presents a comparison of SS1 and
SS2 restrain schemes for an examplary small protein).
Selecting “All” instructs the algorithm to produce
restraints for every residue, whereas choosing “None”
results in no restraint generation. By default, the system
is set to “SS2.” Beyond the “Mode” setting, a collection of
restraints is automatically produced based on additional
parameters. These parameters determine the minimum
distance along the protein chain required for two resi-
dues to be connected by a restraint, as well as the length
and strength of these restraints (Kuriata et al., 2018).

2.2 | CABS-flex standalone application
Compared to the web server version, the CABS-flex stan-
dalone tool (Kurcinski et al., 2019) provides additional
capabilities for modeling larger systems and customizing
protocols. These enhancements enable full command-
line access to various settings, such as the CABS coarse-
grained model parameters, geometrical restraints utilized
in CABS simulations, and result analysis. There are sev-
eral options for analyzing the results, including custom-
ized output parameters, optional all-atom reconstruction
(Badaczewska-Dawid et al., 2020a) with MODELLER
(Webb and Sali, 2016) (including hydrogen atoms), per-
sonalized clustering and filtering, as well as contact map
calculation and visualization, enabling users to analyze
residue-to-residue contact frequencies with user-defined
cutoffs.

As an additional feature, users can apply custom
distance restraints to simulated models based on

experimental data. It is also possible to manually adjust
the flexibility of specific regions within a protein. Users
can adjust flexibility factors for targeted residues at the
local level, or they can opt for global modifications to the
restraint generation system to modify the protein's overall
flexibility across its structure.

With the standalone version of CABS-flex being writ-
ten in Python, it can be seamlessly integrated into bioin-
formatics workflows and connected to additional
libraries. This allows users to incorporate their data and
analyses into more complex systems. The software is
compatible with Linux, macOS, and Windows, and
requires Python 2.7 and GFortran as the only essential
additional software. While Python 2.7 is currently a limi-
tation due to its obsolescence, an in-house version utiliz-
ing Python 3.12 is under development, indicating future
updates to the standalone version. Installing MODELLER
is recommended for full functionality. Importantly,
CABS-flex can be operated on a standard up-to-date
home computer without any special hardware require-
ments, making it both practical and accessible. Moreover,
CABS-flex is free and open-source, ensuring wide accessi-
bility. For more information, including an overview of all
CABS-flex options, examples of use, and installation
instructions, visit https://bitbucket.org/lcbio/cabsflex.

2.3 | Selecting optimal inputs for
CABS-flex protein simulations

The primary and only required input for CABS-flex is the
protein structure. When predicting the flexibility pattern
of a protein with multiple conformations available, the
following approach is recommended: First, employ an
ensemble approach by analyzing multiple conformations,
which is crucial for proteins with substantial structural
diversity to ensure a comprehensive representation of
their flexibility. Second, prioritize structures obtained
under physiological conditions comparable to those of
the biological study, enhancing the simulation's rele-
vance. Third, utilize databases such as CoDNaS (Monzon
et al., 2016) and PDB (Burley et al., 2023) to select a vari-
ety of conformations that demonstrate different func-
tional states, enriching the foundation for predictive
modeling.

The variability in flexibility patterns that arise from
using different starting structures underscores the
dynamic nature of proteins. Each conformation can dis-
tinctively affect simulation outcomes, identifying unique
flexibility hotspots influenced by both structural and
environmental factors.

Regarding simulation settings, the default parameters
were set to mirror fluctuation patterns similar to those
seen in 10-ns MD simulations using various force fields,
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as referenced in earlier studies (Jamroz et al.,, 2013a).
These settings are particularly calibrated for proteins up
to approximately 200 amino acids, where the fluctuation
profiles tend to be qualitatively consistent, with minimal
differences due to the stochastic nature of the simulation
algorithm. For proteins with high conformational diver-
sity or larger sizes, it is advisable to increase the number
of simulation cycles, potentially by tenfold, to capture
more accurate dynamics (the advanced simulation
options are discussed in the CABS-flex 2.0 documenta-
tion) (Kuriata et al., 2018).

3 | APPLICATIONS—CASE
STUDIES

This section presents case studies showing the capabili-
ties of CABS-flex in modeling protein systems. These
examples are intended to inspire readers to explore
CABS-flex applications in structure-function—flexibility
relationship studies.

3.1 | Modeling the flexibility of globular
protein structures

CABS-flex was initially employed to simulate the flexibility
of folded globular proteins, demonstrating results in line
with MD simulations across nanosecond timescales
(Jamroz et al., 2013a, 2013b) and consistent with fluctua-
tions observed in NMR ensembles (Jamroz et al., 2014).
This section presents two case studies that compare the flex-
ibility profiles predicted by CABS-flex simulations to those
measured by the random coil index (RCI), which is derived
from backbone chemical shifts (Fowler et al., 2020).

The RCI serves as a reliable measure of local protein
rigidity (Berjanskii and Wishart, 2005, 2008), and is fre-
quently referenced for assessing the structural accuracy
of both NMR-derived and AlphaFold 2 (AF2)-predicted
models (Fowler et al., 2021; Fowler and Williamson,
2022). Notably, it has been observed (Fowler and
Williamson, 2022) that AF2-generated structures
generally surpass NMR-derived structures in accuracy.
However, the application of RCI is contingent upon the
availability of backbone chemical shift assignments. In
the absence of such data, AF2-predicted structures offer a
provisional model for the protein's tertiary structure,
whose flexibility can then be swiftly approximated using
CABS-flex.

For our analysis, we have chosen two examples from
Fowler and Williamson (2022) to explore the correlation
between flexibility profiles from CABS-flex simulations
and those derived from RCI, which stands as a credible

experimental benchmark. The first case, PDB ID 2ct5,
illustrates an instance where the AF2-predicted structure
is more accurate than the highest-scoring NMR structure.
Conversely, PDB ID 2y4q represents a case where the
NMR structure is more precise. The CABS-flex simula-
tions were conducted using standard parameters, and the
root mean square fluctuation (RMSF) was normalized to
a unit scale to facilitate a direct comparison with the
RCI-measured flexibility. These findings are illustrated in
Figure 3. For PDB ID 2ct5, the flexibility profiles gener-
ated by CABS-flex for both the NMR and AF2 models
accurately pinpoint the locations of flexible regions. Specifi-
cally, the segment between residues 18 and 28 and the
terminal regions are identified as overly flexible in
the NMR model predictions, with a notably better quantita-
tive alignment observed with the AF2 structure's predic-
tions. In the case of PDB ID 2y4q, CABS-flex accurately
identifies the flexible regions as well. The AF2 model lacks
a short beta-sheet found in the NMR model (Fowler and
Williamson, 2022), which contributes to the AF2 model's
diminished accuracy for this protein. Intriguingly, CABS-
flex predicts the region encompassing residues 760-770 to
exhibit excessive flexibility in both models. A further dis-
tinct difference is observed in the terminal region, where
the AF2 model features a longer alpha-helix compared to
the NMR model.

In summary, our evaluation indicates that CABS-flex
serves as an effective tool for estimating backbone flexi-
bility at a modest computational expense, offering accu-
racy on par with the RCI method for proteins lacking
backbone chemical shift data. For such instances,
employing AF2-derived structures—or x-ray structures
when accessible—as the basis for analysis is expected to
provide the most accurate estimates of flexibility. This
approach underscores the utility of CABS-flex in comple-
menting other flexibility measurement methods, particu-
larly in scenarios where direct experimental data may be
limited or unavailable.

3.2 | Structure-function analysis of
protein complexes: Interactions and
mutational dynamics

In this section, we have compiled several examples demon-
strating applications of the CABS-flex method to explore the
critical interactions and structural dynamics of the SARS-
CoV-2 spike (S) protein. The S glycoprotein is a multidomain
protein that binds to the angiotensin-converting enzyme
2 (ACE2) (Huang et al., 2020). Comprising 1273 residues, the
S protein consists of an amino (N)-terminal S1 subunit and a
carboxyl (C)-terminal S2 subunit. The S1 domain, which is
responsible for interactions with the host receptor, includes
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model 3 and AF2 model (UniProt: 096006). Bottom: PDB ID 2y4q NMR model 3 and AF2 model (UniProt: Q13563). In the right panels, the
color and the thickness of the tube representation are proportional to the flexibility of each residue. RCI, random coil index.

an N-terminal domain (NTD), a receptor binding domain
(RBD), and a C-terminal domain (CTD) with two structurally
conserved subdomains: CTD1 and CTD2. The S protein
forms a homotrimer and the virus infection mechanism
involves conformational transitions. Specifically, the RBDs
alternate between a receptor-accessible “up” state (Figure 4a)
and a receptor-inaccessible “down” state (Figure 4b) (Wrapp
et al., 2020). Figure 4c highlights the residues involved in the
binding of the RBD with ACE2 (using contact map MAPIYA
web server [Badaczewska-Dawid et al., 2022a] with a dis-
tance cutoff of 8 A). The mutations in the RBD domain sig-
nificantly influence the virus's evolution.

CABS-flex can be particularly valuable for investigat-
ing the dynamic aspects of protein interactions that are
not evident from static structural data. Although RMSF
derived from multiple crystallized structures offers
important insights into observed protein flexibility,
CABS-flex provides additional value by modeling
dynamics and interactions that may not be fully resolved
in crystal structures. For example, in the study of the
SARS-CoV-2 spike protein (Sanyal et al., 2022), CABS-

flex highlighted significant flexibility in the distal ends of
the ACE2 binding motif—a region often unresolved in
crystallographic data. This modeling was crucial for
understanding the enhanced binding affinity of the Omi-
cron variant's spike protein to the ACE2 receptor (Ortega
et al.,, 2022), which is speculated to contribute to its
higher transmissibility. The insights gained from CABS-
flex about the dynamic behavior of these critical regions
complement static RMSF analyses, offering a more com-
plete understanding of how mutations may influence
virus-host interactions.

Beyond exploring the dynamics of entire regions of
protein—protein interactions, CABS-flex has also been
extensively used to study the effects of mutations on pro-
tein dynamics. It is important to clarify that CABS-flex
does not inherently modify amino acid sequences or gen-
erate coordinates for newly substituted amino acids.
Instead, users must prepare mutated structures prior to
simulation, often employing tools such as Modeller
(Webb and Sali, 2016) or FoldX (Buf3 et al., 2018). This
crucial preparatory step ensures that the input structures
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FIGURE 4 The SARS-CoV-2 spike (S) protein in (a) “up” conformation (PDB ID: 7a98) bound to angiotensin-converting enzyme

2 (ACE2) and in (b) “down” conformation (PDB ID: 7a98) which is without binding to the receptor. The N-terminal S1 subunit consists of
NTD (residues 14-306) in blue, RBD (residues 331-528) in tv_red, CTD1 (residues 529-591) in yellow, and CTD2 (residues 592-686) in cyan.
The remaining residues form the S2 subunit and are shown in raspberry. (c) The interaction between S and ACE2 happens through the

residues shown in light magenta on the RBD and wheat on the ACE2 receptor. The residues identified from CABS-flex trajectories as

(d) highly flexible and mutations could have significant effects on the evolution of the virus (Sanyal et al., 2022) and (e) have a significant

stabilization effect on S-ACE2 complex (Mishra et al., 2022) are highlighted in sky blue. SARS-CoV-2, severe acute respiratory syndrome

coronavirus 2.

accurately reflect the physical characteristics of the
mutated proteins, allowing for reliable simulations of
their dynamics and interactions. This detail underscores
the practical utility of CABS-flex in mutation analysis,
demonstrating its capability to predict the functional con-
sequences of genetic variations.

In combination with other analyses, CABS-flex has been
employed to study the effects of mutations in the RBD of
the spike protein. Sanyal et al. (2022) used CABS-flex trajec-
tories to explore and identify the regions in the RBD that
can have significant impacts on the stabilization of the RBD
domain in its interactions with ACE2 reception. This study
identified the residue stretches 441-445 and 477-484
(Figure 4d) as highly flexible and mutations in this region
will have a significant effect on the evolution of SARS-
CoV-2. Notably, the residues 477, 478, and 484 were
mutated in the Omicron variant (Karim and Karim, 2021).
In another study, Mishra et al. (2022) used CABS-flex to

study the impact of mutations in S proteins on the stabiliza-
tion or destabilization of the S-ACE2 complex. This study
pinpointed 36 mutations involving 12 residues that could
enhance the stability of the S-ACE2 complex (Figure 4e).
The V503D mutation exhibited the highest stabilization of
the S-ACE2 complex and is known to resist neutralization
(Tortorici et al., 2021). Moreover, mutations K417Y, E484A,
N501Y, D614G, and P681H identified in this study align
with those observed in the Omicron variant and its
sub-lineages (Cao et al., 2022; He et al, 2021; Zhang
et al., 2022). These two studies used CABS-flex trajectories
to identify the residues that could play a significant role in
virus evolutions. Multiple residues and substitutions identi-
fied by these studies were also observed in the SARS-CoV-2
variants.

The CABS-flex was also used to investigate the impact
of mutations on the ability of the S protein to bind to the
ACE2 receptor. For example, the D614G substitution
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introduces higher infectivity (Korber et al., 2020) and to
understand the possible reasons for this, Verkhivker et al.
(2022) used trajectories from 1000 independent CABS-
flex simulations. The authors performed a principal com-
ponent analysis (PCA) of the CABS-flex trajectories and
used elastic network model analysis to determine the
dynamics profiles from these trajectories. The D614G
mutation introduces significant conformational adapt-
ability to the “up” states, without compromising the
folding stability or integrity of the S proteins (Cai
et al., 2021). Based on the dynamic profiles from CABS-
flex trajectories, the study concluded that the D614G
mutation allows the S protein to exist in a dynamic
equilibrium between closed and open states, with the
RBD favoring the “up” conformation before ACE2 bind-
ing. In another study (Verkhivker, 2022a) exploring the
effects of amino acid substitutions in SARS-CoV-2 vari-
ants, trajectories from 100 independent CABS-flex simu-
lations were used to identify the diversity of “up”
conformations. The study concluded that both A570D
and D614G substitutions act as potential regulatory
switches and play a role in modulating the dynamics of
the S protein and its interaction with host receptors.
Moreover, the study postulates that the two residues play
an important role in the transitions between the “down”
and “up” conformations of the RBD (Verkhivker, 2022a).
Together, these two studies exemplify the use of CABS-
flex trajectories to understand the implications of amino
acid substitution introducing changes in the adaptability
and evolution of the virus.

3.3 | Exploring allosteric mechanisms
through integrative computational
modeling

CABS-flex simulations have been utilized as a tool for inves-
tigating dynamics and elucidating allosteric regulation
mechanisms. Although CABS-flex does not directly model
ligand interactions, it effectively pinpoints regions of signifi-
cant conformational flexibility within proteins that suggest
potential allosteric sites. For instance, Verkhivker (2022b)
applied CABS-flex in conjunction with atomistic simula-
tions to explore the dynamic conformational landscapes of
the Hsp90 chaperone complexes. This integrated approach,
which demonstrated the compatibility of CABS-flex with
MD simulations, helped identify critical dynamic areas
essential for understanding allosteric regulation and client
protein integration in Hsp90.

Similarly, Amusengeri et al. (2019) employed CABS-
flex to analyze the intrinsic dynamics of heat shock
proteins (Hsp70s) from Plasmodium falciparum,
highlighting regions of conformational flexibility indicative

of potential allosteric sites. Their study effectively bridges
the resolution gap between coarse-grained simulations and
all-atom MD simulations, confirming the consistency of
allosteric sites identified by CABS-flex with those observed
in more detailed simulations. Furthermore, Amusengeri
et al. (2019) verified the interactions of ligands with the
studied proteins through additional all-atom MD simula-
tions. These simulations, focusing on both apo (ligand-free)
and holo (ligand-bound) states, provided a detailed view of
how ligands influence protein conformation and function.

Another significant contribution comes from a study
focusing on the Hsp90 chaperone interactions with
cochaperones and client proteins (Verkhivker, 2022c),
which provided detailed atomistic insights from integra-
tive modeling (using CABS-flex simulations followed by
MODELLER-based all-atom reconstruction) and network
analysis of conformational landscapes. This study reveals
that dynamic-based allostery, driven by the interplay of
conformational states and interactions within the chaper-
one complex, is crucial for the efficient recruitment and
integration of client proteins.

CABS-flex was also adeptly employed to model the S
protein’s ability to switch between functional states,
highlighting its utility in mapping dynamic regulatory
switches within the protein structure (Verkhivker and Di
Paola, 2021a, 2021b). Simulation trajectories from CABS-
flex were validated by comparing them with those from
all-atom MD simulations and experimental data, ensur-
ing reliability in modeling the spike protein's conforma-
tional dynamics. These were further analyzed alongside
atomistic reconstructions and PCA to identify hinge
regions and characterize collective motions within the
SARS-CoV-2 spike protein complexes, providing insights
into allosteric communication pathways.

Ultimately, this collection of studies highlights the
utility of CABS-flex in identifying potential allosteric sites
and demonstrates that integrative simulation strategies
can provide crucial insights into the complex mecha-
nisms of allostery in protein dynamics, essential for
advancing targeted drug development.

3.4 | Structure-based prediction of
aggregation-prone regions (APRs)

CABSHlex, as a tool for simulating near-native flexibility,
can be easily used to introduce the aspect of protein flexibil-
ity to structure-based studies of static conformations of glob-
ular proteins. This capability was used in the Aggrescan3D
(A3D) (Kuriata et al., 2019a) method for structure-based
prediction of protein aggregation properties. By default,
A3D runs in “static mode” where it evaluates aggregation
tendencies of a static protein structure. However, A3D
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(b) Human p53 DNA-binding
domain (PDB ID: 2fej) aggregation
propensity predictions using A3D
“static mode” (left side) and
“dynamic mode” (right side).
Residues are colored in A3D scale
(blue—solubility; red—
aggregation). Aggregation prone
regions are encircled. A3D,
Aggrescan3D.

calculations can be also performed using “dynamic mode”
(Figure 5a) which harnesses CABS-flex to simulate protein
fluctuations. In this mode, an initial static structure serves
as a starting point for a CABS-flex simulation, and aggrega-
tion assessments are performed on CABS-flex output
models, which reflect protein flexibility. The final structure
is determined as the model with the highest aggregation
score, offering a more comprehensive and dynamic view of
protein aggregation tendencies. This dynamic approach is
particularly valuable as in solution protein aggregation may
arise not only from global unfolding but also as a result of
local structural changes and fluctuations from the protein’s
native state (Chiti and Dobson, 2009). To emphasize the
utility of this approach we can consider the illustrative
example of the human p53 DNA-binding domain (PDB ID:
2fej). Calculations performed using A3D “static mode”
(Figure 5b, left panel) do not reveal all potential APRs.
However, after harnessing A3D “dynamic mode”
(Figure 5b, right panel), CABS-flex unveils APRs that mir-
ror experimental observations (Navarro and Ventura, 2019).
In addition, A3D provides robust tools for introducing and
analyzing mutations within protein sequences. Users can
utilize the “Mutate residues” feature to manually input spe-
cific sequence changes or employ the automatic mutations
functionality. This automatic tool identifies APRs and sug-
gests strategic point mutations to charged residues, aiming
to enhance protein solubility. Such modifications are crucial

for exploring how changes in the flexibility of flanking
regions can influence protein stability and aggregation
propensity.

A3D method is available both as a web server (Kuriata
et al., 2019a) and as a standalone tool (Kuriata et al., 2019b),
offering a wide range of applications including automatic
redesign toward soluble variants. Recently, A3D has been
applied to predict regions responsible for aggregation across
entire proteomes, a feat made possible through the use of
structural predictions generated by AlphaFold2 (AF2)
(Varadi et al., 2022). A3D databases have been created to
seamlessly integrate A3D's analytical infrastructure with
structural predictions for human (Badaczewska-Dawid
et al., 2022b), yeast (Garcia-Pardo et al., 2023), and other
proteomes (Badaczewska-Dawid et al., 2024a). Finally, the
A3D method has recently undergone significant enhance-
ments, notably including the ability to consider environmen-
tal pH. These advancements are now accessible through the
A4D web service (Barcenas et al. 2024).

3.5 | Structure-based prediction of
S-nitrosylation sites

In Section 3.4, we discussed the utilization of CABS-flex
for revealing APRs on protein surfaces. A similar
approach, integrating CABS-flex into structure-based
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CABS-flex ensembles provided valuable insights into the structural dynamics of S-nitrosylated proteins. (a) The workflow

utilizes SNOfinder to identify proteins susceptible to S-nitrosylation, generates a structural ensemble of 20 models per protein with CABS-
flex to highlight their flexibility, and analyzes these models with SNOmodel to calculate key structural and biochemical parameters, thereby
enhancing understanding of S-nitrosylation mechanisms. (b) The cartoon representations show the models from the CABS-flex ensemble
(white) of the mitochondrial chaperone TRAP1 (deep teal). The stick and ball representations highlight the conformational dynamics of
SNO cysteine (SNO, red), proximal cysteine (proximal, marine) of the ensembles, and the Sy-Sy distances between them.

analyses, was also employed by Papaleo et al. (2023) for
identifying  S-nitrosylation sites. S-nitrosylation—a
reversible modification of cysteine residues to form
S-nitrosothiols—is a key posttranslational modification
(PTM) affecting cellular functions and is implicated in
various diseases, making it a target for therapeutic inter-
ventions. The method involves identifying cysteines close
in three-dimensional space, not just sequence, highlight-
ing the importance of protein flexibility for exposing
potential S-nitrosylation sites and influencing protein
behavior and interactions within cellular pathways. For
instance, in the mitochondrial chaperone TRAP1, SNO at
Cys501 induces conformational changes at the distal site
in the protein structure which results in altering the open
and closing motions necessary for its chaperone function.
This modification reduces its ATPase activity, and with
its proximity to Cys527 suggests potential disulfide bridge
formation (Faienza et al., 2020; Rizza et al., 2016).

Figure 6a presents a workflow devised by Papaleo et al.
(2023), showcasing a two-step bioinformatic approach for
studying S-nitrosylation in proteins. Initially, the workflow
employs SNOfinder, a tool specifically designed for the
identification of proteins susceptible to S-nitrosylation by
leveraging databases of known PTMs and structural data.
This identification process is critical for pinpointing proteins
where S-nitrosylation plays a potential role in regulating

protein function and signaling pathways. Following the
identification, CABS-flex is utilized to generate a structural
ensemble comprising 20 models for each identified protein.
These models collectively represent the protein's structural
flexibility and potential conformational states, taking into
account the dynamic nature of protein structures in biologi-
cal systems. The resulting ensemble is then analyzed using
the SNOmodel pipeline, which is tailored to calculate spe-
cific structural and biochemical parameters, such as dihe-
dral angles and solvent accessibility of cysteine residues
involved in S-nitrosylation. This analysis is aimed at under-
standing the structural context of S-nitrosylation sites,
including their proximity to other functional groups within
the protein and potential interactions with cofactors or
metal ions, thereby shedding light on the mechanistic
underpinnings of S-nitrosylation in protein function and
regulation.

For the mitochondrial chaperone TRAPI1, the CABS-
flex simulations focused on the cysteines C501 and C527.
The Sy-Sy distance between the two sulfur groups of
these cysteines is highlighted in Figure 6b. It showed that
SNO at C501 could lead to a disulfide bridge with C527, a
finding supported by experimental validation. This
insight was important for understanding the redox regu-
lation of TRAP1 and its role in diseases. The CABS-flex
approach, a computationally inexpensive method, effectively
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(a) Example CABS-flex predictions (best prediction out of 10,000 simulated structures—blue; best prediction out of top

10 structures ranked by CABS-flex—yellow) superimposed on the experimental PDB structures (red). (b) Comparison between CABS-flex
predictions (yellow) and AlphaFold2 predictions (cyan) superimposed on the experimental PDB structures (red).

identified candidates with structural constraints that
limit SNO or disulfide bridge formation. This study
analyzed multiple SNO proteins, including the tumor
protein TP53, focusing on its DNA-binding domain.
For example, CABS-flex simulations were used to
determine how mutations near the SNO and adjacent
cysteine sites in TP53 influence its stability and DNA-
binding capabilities. Key findings include the stabiliz-
ing N235H variant promoting S-nitrosylation and
disulfide bridge formation, enhancing TP53's structure.
On the other hand, the destabilizing variants could
impair the structural mechanism.

3.6 | Structure prediction of linear and
cyclic peptides

Recently, we introduced a new CABS-flex-based protocol
that enables de novo structure prediction of linear and cyclic
peptides (Badaczewska-Dawid et al., 2024b). The protocol
has been introduced as an extension of the CABS-flex stan-
dalone application; it uses the CABS-flex methodology to
perform an efficient exploration of a peptide’'s conforma-
tional space (Badaczewska-Dawid et al., 2024b). The proto-
col was extensively tested against other methods (AF2
[Jumper et al., 2021] implemented in the ColabFold [Mirdita
et al, 2022], ESMFold [Lin et al., 2023], APPTEST [Tim-
mons and Hewage, 2021], PEP-FOLD [Shen et al., 2014]) on
a benchmark consisting of 159 linear and cyclic peptides
ranging from short peptides of 9 residues to mini-proteins
consisting of 49 residues. The two examples of CABS-flex
predictions are highlighted in Figure 7. In most bench-
marked cases, AlphaFold-based protocol outperformed
CABS-lex, especially for longer peptides, due to its ability to
capture complex long-range interactions. However, the
diverse structural behaviors of short peptides, which range
from disordered regions to well-defined secondary struc-
tures, pose a challenge for deep learning methods like AF2,
as experimental structures sometimes inadequately

represent this diversity. We have demonstrated that in these
instances, coarse-grained methods such as CABS-flex remain
competitive by effectively navigating this structural diversity
through simplifications and reduced granularity. Figure 7b
illustrates two examples in which CABS-flex was able to pre-
dict conformations that turned out to be closer to the experi-
mental ones than those proposed by AF2.

In a standard CABS-flex simulation, the only required
input is the initial structure provided in the form of a PDB
code or PDB file. In the CABS-flex peptide structure predic-
tion protocol, the only explicitly required input is an amino
acid sequence. The starting structure is generated as a ran-
dom coil based on that input sequence. There are other
optional inputs, such as secondary structure in three-letter
notation (H, helix; E, extended; C, coil). If it is not supplied,
the secondary structure would be predicted by Psipred
(Jones, 1999), though we recommend users to predict it
using state-of-the-art deep-learning methods for enhanced
accuracy (i.e., NetSurfP-3.0 [Hoie et al., 2022] or SPOT-1D-
LM ([Singh et al,, 2022]). The versatility of the presented
CABS-flex modeling pipeline is a notable advantage, as it
can be readily expanded by incorporating additional data or
testing alternative configurations. Additional simulation
data can be easily introduced as distance constraints
between C-alpha atoms or side group centers of mass with
appropriate confidence levels that may force a precisely
known distance or provide a weak bias (Badaczewska-
Dawid et al., 2024b). Potential pipeline extensions include
the use of techniques like MD to investigate the peptide
dynamics or explore the design of peptide-based drugs with
modifications extending beyond natural amino acids, pro-
viding a broader scope for research and applications.

3.7 | Merging with high-accuracy
all-atom reconstruction

CABS-flex employs the CABS coarse-grained model to
create C-alpha protein models (refer to Section 2), which
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FIGURE 8

CABS-flex output structures rebuilt by two methods: (a) Modeller in cyan and (b) cg2all’ in dark green, superimposed on

the experimental PDB structure in orange (PDB ID: 3oou). We highlight the accuracy of side-chain reconstruction (left panels) and helical

hydrogen bond networks (right panels) in the rebuilt structures.

are subsequently reconstructed into full-atom structures.
Despite the advances in reconstruction methods, they are
not without flaws, and as a result, suboptimal chain
geometries can emerge in the final output (Badaczewska-
Dawid et al., 2020b). Moreover, the process of reconstruct-
ing from coarse-grained models introduces additional
challenges. Namely, the initial C-alpha trace may include
unphysical distortions and different backbone reconstruc-
tion methods exhibit varying degrees of resilience to that
challenge (Badaczewska-Dawid et al., 2020b). This can
lead to missing portions of the rebuilt backbone or
amplified distortions, which can substantially affect the
quality of subsequent side chain reconstruction, all-atom
energy minimization, and scoring (Badaczewska-Dawid
et al., 2020Db).

As of now, CABS-based tools are integrated with
Modeller-based protocol (Webb and Sali, 2016), utilizing
the coarse-grained models as templates and the automo-
del class from Modeller (Webb and Sali, 2016), to gener-
ate a comprehensive set of restraints for reconstructing
all heavy atoms (Badaczewska-Dawid et al., 2020a).
Unfortunately, the Modeller protocol often faces the
reconstruction difficulties mentioned above. This
prompted our exploration of a new reconstruction
method. Recently, we obtained very promising results
using the deep-learning-based method cg2all (Heo and
Feig, 2024). The method, inspired by the success of AF2,
employs a graph neural network and utilizes rigid-body
blocks for 3D structure generation. It incorporates physi-
cal constraints and structural features, learned from
known protein conformations during model training.
Preliminary results indicate an improvement in C-alpha
RMSDs, fewer clashes, and better MolProbity (Chen
et al., 2010) scores of the rebuilt models by the cg2all
method. This can be seen in Figure 8, where the quality
of both the main chain and side chains rebuilt by Model-
ler (Figure 8a) is worse than in the structure rebuilt by

cg2all (Figure 8b). The reconstructed structures demon-
strate improved local quality and stability, assessed by
using the reconstructed structures as a starting point for
MD simulations. Furthermore, we observe a significant
improvement (Figure 8b, right panel) in the previously
observed issue of DSSP (Kabsch and Sander, 1983) being
unable to identify secondary structure elements in the
Modeller-reconstructed structures, due to local distor-
tions (Figure 8a, right panel).

Therefore, one of the shortcomings of using coarse-
grained models, including the CABS-flex method, is the
difficulty in reconstructing physically meaningful full-
atom structures. We believe that this problem can be
addressed by employing new deep learning networks,
which would allow for the utilization of extensive knowl-
edge of known structures in the task of reconstruction
based on the coarse-grained data.

Another common challenge in reconstructing protein
structures is the incorporation of nonstandard amino
acids or PTMs. While CABS-flex is primarily designed to
work with natural amino acids and does not directly sup-
port the integration of nonstandard amino acids or PTMs,
users can approximate the effects of such modifications.
For instance, users can substitute phosphoserine with
aspartic acid or acetyllysine with lysine to mimic the
effects of these modifications. For a more precise analy-
sis, researchers may start with a CABS-flex generated
ensemble of structures and subsequently refine these
models using more detailed MD simulations. Tools like
CHARMM-GUI, which has recently incorporated the
PDB Manipulator for easier handling of nonstandard amino
acids and PTMs (Park et al., 2023), offer an advanced plat-
form for such detailed studies. Additionally, the PyMOL
plugin pyTM can be used to visualize and introduce com-
mon PTMs into models (Warnecke et al., 2014). This lay-
ered approach leverages the rapid simulation capabilities of
CABS-flex alongside the detailed analysis possible with MD,
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providing a framework for studying the structural and func-
tional impacts of PTMs.

3.8 | AlphaFold's pLDDT: Bridging
predictive confidence and protein
flexibility

The pLDDT score, developed by AlphaFold, serves as a
confidence metric for the predicted positions of amino
acids within a protein structure. Regions with high
pLDDT scores generally indicate high structural confi-
dence and presumed rigidity, whereas lower scores often
suggest potential flexibility where structural predictions
are uncertain. Importantly, pLDDT scores can indicate
flexibility even in regions with high scores if the predic-
tive model, like AlphaFold, has incorporated multiple
conformations in its training dataset.

This underscores the complexity of interpreting pLDDT
scores, necessitating a nuanced approach to assessing pro-
tein flexibility. AF2 adaptations for modeling multiple pro-
tein states enhance the structural heterogeneity of predicted
ensembles (Sala et al., 2023). These adaptations allow for
the simulation of various conformational states beyond a
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single rigid configuration, which is essential for proteins
undergoing significant structural changes. The pLDDT met-
ric reliably assesses the structural confidence of these pre-
dicted models, assigning higher values to more accurately
predicted conformations.

Here, we analyze two example proteins from the
ATLAS database (Vander Meersche et al., 2024), 602v_A
and 1d3y_B, which were subjected to three 100 ns simula-
tions using GROMACS v2019.4 with the CHARMM36m
force field. By scaling the RMSF values yielded by CABS-
flex alongside those from MD simulations, we main-
tained comparability and shape consistency of fluctua-
tion values. Spearman's correlation was employed as a
metric to measure the similarity between these two sets
of fluctuation data.

For 602v_A, the correlation between CABS-flex and
ATLAS's MD simulations was notably high at 0.86, indicating
strong predictive accuracy by CABS-flex (Figure 9a). Interest-
ingly, the shape of the pLDDT curve inversely mirrored the
RMSF curves, leading to further analysis where RMSF and
pLDDT values from MD were scaled together. This analysis
resulted in a Spearman correlation of —0.80, suggesting a
strong negative interdependence, with most fluctuations
aligning with protein loops that are prone to movement.
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Examples of protein structure fluctuations from CABS-flex and molecular dynamics (MD) runs, and pLDDT confidence
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right, the figure shows pLDDT confidence scores visualized on the protein structures. pLDDT, predicted local distance difference test.
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Conversely, 1d3y_B, which is rich in secondary struc-
ture elements and has fewer loops, showed significant
fluctuations loosely correlated with pLDDT scores
(Figure 9b). Particularly in the region 195-205, a signifi-
cant drop in pLDDT scores was observed. This region
was not originally present in the PDB data and was com-
putationally modeled by AF2 for inclusion in the ATLAS
database (Vander Meersche et al., 2024), explaining the
lower pLDDT scores. Such scores often suggest structural
uncertainty, which, in this case, is a direct result of the
absence of empirical data for this segment. Despite
the low pLDDT, this region exhibits a level of flexibility
comparable to other regions with much higher pLDDT
scores, emphasizing the importance of source data in
interpreting both pLDDT scores and flexibility.

These findings underscore the complex and context-
dependent nature of using pLDDT scores to infer flexibil-
ity in protein structures. They highlight the importance
of integrating these scores with dynamic simulation data
from CABS-flex to obtain a comprehensive understand-
ing of protein behavior, facilitating more informed pre-
dictions about protein functionality under diverse
physiological conditions.

4 | CONCLUSIONS

CABS-flex has established itself as an efficient and cost-
effective tool for simulating the backbone flexibility of
proteins across diverse biological contexts. It has been
particularly useful for applications in the analysis of glob-
ular proteins, mechanisms of viral adaptation, allostery,
prediction of aggregation-prone and S-nitrosylation sites,
as well as in structure prediction for linear and cyclic
peptides, thereby enhancing our understanding of pro-
tein dynamics.

In this work, we have shown how CABS-flex effec-
tively integrates into research workflows, complementing
traditional experimental techniques such as x-ray crystal-
lography, NMR spectroscopy, and cryo-electron micros-
copy (cryo-EM). This integration proves especially
valuable in scenarios where experimental data are sparse,
or where traditional methods like crystallization fail due
to the dynamic nature of the target proteins. Addition-
ally, CABS-flex has demonstrated its utility in studying
the effects of mutations, further enhancing its versatility
in addressing various biological questions. In the various
workflows presented, CABS-flex is primarily used to
simulate the flexibility of globular proteins at a low com-
putational cost, offering a practical and less resource-
intensive alternative to the more computationally
demanding all-atom methods. This capability allows for
the exploration of a wide range of protein conformations

and provides insights into dynamics that are often inac-
cessible through conventional experimental approaches
alone, making CABS-flex a useful tool in computational
biology for studying protein dynamics with reduced com-
putational overhead.

Despite its advantages, the coarse-grained nature of
CABS-flex, which relies on a knowledge-based force field,
might not capture all detailed molecular interactions.
This limitation is particularly evident in scenarios involv-
ing transient interactions, highly dynamic regions, or
intricate regulatory mechanisms within proteins. Such
interactions often require a detailed atomic-level under-
standing that coarse-grained models may oversimplify.
This gap highlights the importance of supplementing
CABS-flex with higher-resolution methods, such as all-
atom MD simulations, to validate and refine computa-
tional predictions. Integrating these methods ensures a
more comprehensive understanding of protein dynamics,
particularly in understanding the subtle nuances of allo-
steric regulations and the complexity of protein-protein
interaction interfaces.

From our experience, the adept application of dis-
tance restraints in CABS-flex simulations is crucial yet
frequently overlooked by users. Often, a default set of dis-
tance restraints and simulation parameters is employed,
optimized for the short-term dynamics of folded globular
proteins as derived from all-atom MD simulations.
Adjustments to these restraints are necessary for different
protein systems and timescales to accommodate diverse
functional states and conformations. Modifying these
restraints presents challenges, requiring expertise and
sometimes extensive customization. An interesting
and important challenge is the design of distance
restraints based on low-resolution experimental data,
which can include techniques such as small-angle x-ray
scattering (SAXS), cryo-EM, or cross-linking mass spec-
trometry (XL-MS). These methods provide valuable struc-
tural information that can guide the placement and
adjustment of distance restraints. Recent significant
advances in Al-based structural prediction have further
expanded the possibilities for integrative modeling pipe-
lines (Rout and Sali, 2019), which combine modeling
methods with experimental data. For instance, Al-
predicted models can now be integrated with data from
MS (Allison et al., 2022) or cryo-electron tomography
(Mosalaganti et al., 2022), setting the stage for simulating
large-scale dynamics. Simplifying the process of adjusting
restraints and their weights remains a key area for future
development to enhance user accessibility and flexibility
in simulation setups.

Additionally, exploring the integration of CABS-flex
with advanced Al-based structural predictions, such as
those from AF2, could be promising. The conceptual use
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of AlphaFold's pLDDT scores to inform distance
restraints in CABS-flex simulations might lead to more
nuanced depictions of protein flexibility, particularly in
regions where the predictive model's confidence varies.
This approach could potentially enhance CABS-flex's
capability to model protein dynamics more accurately,
especially in areas that are critical for understanding
functional mechanisms. Such integration could improve
the utility of simulations, providing insights into protein
behavior that are complementary to traditional experi-
mental approaches.

As we advance, refining the CABS-flex algorithm and
simplifying its user interface will be crucial for facilitat-
ing more precise simulations of large biological systems.
Continued development will ensure that CABS-flex
remains an useful tool in computational biology, aiding
researchers in effectively exploring the dynamic nature of
proteins and their complexes.
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