Residue conservation elucidates the evolution of r-proteins in ribosomal assembly and function

International Journal Of Biological Macromolecules, 140, 323--329, 2019

Authors: Pilla Smita, Ranjit Prasad Bahadur

Abstract

Ribosomes are the translational machineries having two unequal subunits, small subunit (SSU) and large subunit (LSU) across all the domains of life. Origin and evolution of ribosome are encoded in its structure, and the core of the ribosome is highly conserved. Here, we have used Shannon entropy to analyze the evolution of ribosomal proteins (r-proteins) across the three domains of life. Moreover, we have analyzed the residue conservation at protein-protein (PP) and protein-RNA (PR) interfaces in SSU and LSU. Furthermore, we have studied the evolution of early, intermediate and late binding r-proteins. We show that the r-proteins of Thermus thermophilus are better conserved during the evolution. Furthermore, we find the late binders are better conserved than the early and the intermediate binders. The residues at the interior of the r-proteins are the most conserved followed by those at the interface and the solvent accessible surface. Additionally, we show that the residues at the PP interfaces are better conserved than those at the PR interfaces. However, between PR and PP interfaces, the multi-interface residues at the former are better conserved than those at the latter ones. Our findings may provide insights into the evolution of r-proteins in ribosomal assembly and function. [\textcopyright] 2019 Elsevier B.V.


Warning: Unknown: write failed: No space left on device (28) in Unknown on line 0

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/var/lib/php/sessions) in Unknown on line 0