CABS-flex 3.0: an online tool for simulating protein structural flexibility and peptide modeling

Nucleic Acids Research, 53, W95-W101, 2025

Authors: Wróblewski Karol, Zalewski Mateusz, Kuriata Aleksander, Kmiecik Sebastian

Abstract

Simulating protein structure flexibility using classical methods is computationally demanding, especially for large proteins. To address this challenge, we have been developing the CABS-flex method, which enables fast simulations of protein structural flexibility by combining a coarse-grained simulation approach with all-atom detail. Previously available as the CABS-flex 2.0 web server, the method has now undergone a major upgrade with the release of CABS-flex 3.0. Key improvements include the introduction of intuitive flexibility modes that simplify the control of distance restraints and allow users to reflect known or expected dynamic regions; improved all-atom reconstruction for higher-quality model generation; a new feature for de novo peptide structure prediction, supporting both linear and cyclic peptides along with their conformational flexibility; and new tools for result analysis and visualization, facilitating deeper insights into structural flexibility. Additionally, AlphaFold pLDDT-derived restraints can be used as optional input for guiding simulations. The method accepts input as either a PDB/mmCIF structure or a sequence (for peptide modeling). Advanced options allow users to incorporate experimental or computational restraints. The CABS-flex 3.0 web server is available at https://lcbio.pl/cabsflex3. This website is free and open to all users, with no login requirement.